

TCSS 465A

Embedded Real-Time System Programming

Midterm - Spring 2007

Name _ Key _

1) Name five properties that real-time systems must have to support critical applications:

A) Timeliness – must meet deadlines appropriately

B) Design for peak-load – Can’t crash under peak loads

C) Predictability – Must not have unanticipated surprises

D) Fault Tolerance – The system must be robust and fail-safe

E) Maintainability – Must be modifiable as requirements evolve

2) A) CLEARLY show on a timing diagram the parameters for a real time periodic task:

• Compute time Ci
• Finish time f i
• Arrival time a i
• Phase Φ i
• Start time s i

 B) Define in terms of the parameters above:

• Response time:

 R i = f i - a i

• Average response time:

 n

 Rave = 1/n Σ (f i - a i)
 i=1

• Lateness:

 L i = f i - d i

• Maximum lateness:

 L = max (fmax i - d i)
 i

3) Clearly describe and distinguish between each of the following scheduling algorithms:

A) Earliest Due Date

 Used for scheduling aperiodic, independent, non-preemptive tasks with synchronous arrival times
 Provides an optimal schedule with respect to minimizing Lmax
 Tasks are scheduled in order of non-decreasing deadlines

B) Earliest Deadline First

 Used for scheduling preemptive, independent, preemptive, dynamic tasks (arbitrary arrival times)
 Provides optimal schedule with respect to minimizing Lmax
 Task which, at any instant in time, has the earliest absolute deadline among ready tasks has priority

C) Latest Deadline First

 Used for scheduling aperiodic, non-preemptive tasks with synchronous arrival times and precedence constraints
 Provides optimal schedule with respect to minimizing Lmax
 Tasks are scheduled backwards with the task having the latest deadline scheduled “first”

D) Spring Algorithm

 Used to schedule tasks with arbitrary arrivals, non-preemptive, and with various constraints:
 priorities, precedence relations, resource constraints, etc.
 Seeks to find feasible schedule
 Tasks are scheduled based upon an optimization driven by successive application of a heuristic function

4) Consider the following set at tasks with precedence constraints:

 A) Apply EDF to schedule the following set of tasks

 B) Apply LDF to schedule the set of tasks:

5) Consider the following set of periodic tasks:

 A) Verify the schedulability according to the Rate Monotonic algorithm

< = 1 , so it is potentially schedulable.

 B) Construct the schedule using Rate Monotonic.
 Giving highest priority to highest arrival rate:

 C) Construct the schedule using Earliest Deadline First.
 Backwards Scheduling giving priority to earliest deadline:

6) A) Describe Priority Inversion and clearly show an example of it:
To reduce worst case blocking time and to prevent deadlocks, a task is not allowed to enter a critical section if
there are locked semaphores that could block it.

 B) Define the Priority Ceiling Protocol.

 1) Each semaphore is assigned a priority ceiling equal to the highest priority task that can lock it.

 2) A task J is allowed to enter a critical section only if its priority is higher than all priority ceilings of the
semaphores locked by tasks other than task J. While holding a semaphore, J inherits the highest priority of any
job that is blocked by it.

 3) When a task J exits a critical section, it unlocks the semaphore and the highest-priority task waiting on that
semaphore is awakened. The priority of J is set to the highest priority of all tasks that are blocked by it, or
otherwise returned to its nominal priority.

 C) Given the Multilevel Blocking Mutual Exclusion problem:

 Show how the Priority Ceiling Protocol will improve the scheduling.

